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Abstract—A gable type bis-phthalocyanine (Pc) has been synthesized for the first time using a bis-phthalonitrile unit synthesized in
three steps. This Pc dimer has a fluorescene quantum yield that is not significantly reduced relative to that of the control Pc
monomer.
� 2004 Elsevier Ltd. All rights reserved.
Various types of phthalocyanine (Pc) dimers have been
reported to date,1 including cofacial sandwich type lan-
thanide complexes,2 l-oxo dimers,3 and coplanar
homo-4 and heterodimers.5 However, no report has
appeared previously on angular Pc dimers, such as the
gable bis-Pc reported in this communication. The key
intermediate unit during the synthesis is a gable type
of bis-phthalonitrile, which provides the bridging unit
for connecting the two Pc rings. Florey and Vogel6

reported the synthesis of compound 1, which can be
transformed to bis-phthalonitrile derivative 2 by reac-
tion with dicyanoacetylene. Compound 1 can be synthe-
sized from commercially available cyclopentadiene and
maleic anhydride by a nine-step reaction in about
0.15% yield.6,7 A similar connecting unit, compound 8,
may be prepared by the route shown in Chart 1. How-
ever the starting material, bicyclo[2,2,2]oct-7-ene-
2,3,5,6-tetracarboxylic dianhydride 3 is prohibitively
expensive, and dicyanoacetylene is highly toxic and can-
not easily be obtained in large scale quantities.8 Judging
from the typical reaction yield in each step, the final
linking unit, compound 8, would be obtained in only
ca. 5–8% yield from starting compound 3. Our aim
therefore has been to prepare the connecting unit using
a shorter, more generally applicable synthetic method.
In this communication, we report the efficient synthesis
of a type of gable bis-phthalonitrile, compound 11, and
the gable Pc 12 that can be derived from it.

In order to obtain a gable type bis-phthalonitrile by the
shortest route (three steps, Chart 1 bottom), anthracene
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and cis-2-butene-1,4-diol were reacted to form d,l-
2,3(9,10-anthrylene)-1,4-butandiol, 9.9 In order to intro-
duce four bromine atoms, 9 was added to an ice-cooled
mixture of bromine and iodine (ca. 1000:1 molar ratio)
over the period of 1h.10 The reaction was then contin-
ued in the dark for 6h at 0 �C and then for 18h at room
temperature. After workup with Na2S2O3 aqueous solu-
tion, and column chromatography using basic alumina
and CHCl3, tetra-brominated 10 was obtained in ca.
70% yield.11

Cyanation of polybrominated (and polyiodinated) aro-
matic compounds is challenging. Several different meth-
ods have been proposed. The most well known is the
Rosenmund–von Braun reaction of aromatic poly-bro-
minated or -iodinated compounds.12 However, there
are no reports of successful substitution of complexes
with more than three bromine or iodine atoms using this
method. Application to compound 9 produced a mix-
ture of mono-, di-, and tri-cyanated derivatives, with
the desired tetra-substituted compound only present in
less than 0.1% yield. Recently, two new methods have
been reported for the cyanation of aromatic bromine
atoms. In one report, substitution was carried out
with reactive aryl iodide generated in situ,13 but this
method was not applied to polybrominated aromatic
compounds. When we applied this method using the
method described to our system, 11 was not obtained.
Attempts to modify the conditions by using different
solvents, and different reaction times and temperatures
proved unsuccessful. In another report,14 substitution
of six bromine atoms of 2,3,6,7,10,11-hexabromotri-
phenylene was achieved by reacting with potassium
cyanide in 2-chloronaphthalene in the presence of di-
benzo-18-crown-6 and a huge excess of tetrakis(triphen-
ylphosphine)palladium(0) catalyst at 140 �C. We studied

mailto:nagaok@ 


O
O

O

OO

O

CH2OH
CH2OHHOH2C

HOH2C
CH2OTos

CH2OTosTosOH2C

TosOH2C

CN
CN

NC

NC
CN

CN
NC

NC

CN
CN

NC

NC

Br
Br

Br

Br

O

CN
CN

NC

NC

O

H CH2OH

CH2OHH

+

CH2OH
CH2OH

O

N HN

N

N
N

NH
N

N

N

NH
N

N
N

HN
N

N

1 2

1211

109

3 4 5

6 7 8

a b

d e

c

f g h

i

Chart 1. Structures of compounds 1 and 2, and synthetic routes to compounds 8 (middle) and 11 and gable Pc 12 (bottom). Reagents and conditions:

(a) lithium aluminum hydride, tetrahydrofuran; (b) p-toluenesulfonyl chloride, pyridine; (c) potassium tert-butoxide, dimethylsulfoxide; (d)

dicyanoacetylene; (e) 2,3-dichloro-5,6-dicyano-1,4-benzoquinone; (f) 180–185�C; (g) bromine, iodine; (h) KCN, [Pd(PPh3)4], N,N-dimethylform-
amide; (i) 4-tert-butylphthalonitrile, lithium, 1-pentanol.
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the latter method in detail and systematically modified
the amount of catalyst, the solvent, and the reaction
time and temperature to maximize the yield. We were
eventually able to obtain compound 11 in ca. 50–
55% yield using this method.15 The presence of di-
benzo-18-crown-6 does not affect the reaction yield,
but increases the complexity of the purification step of
the resulting compound. The tetrakis(triphenylphos-
phine)palladium(0) catalyst starts to decompose at
temperatures as low as 110–120 �C, so a very large excess
has to be present within the system. In addition to
the high total yield (>20%), there are several advantages
to this approach. No mono- and di-cyanated
compounds were obtained, and a slight trace of tri-cyan-
ated compounds that was formed could be easily
removed with a recrystallization step. The synthetic
route is short and involves no highly toxic reagents such
as dicyanoacetylene.8 The reagents are all relatively
inexpensive.

Gable phthalocyanine complex, 12, was obtained by
reacting bis-phthalonitrile 11 with excess 4-tert-but-
ylphthalonitrile in 1-pentanol under reflux in the pres-
ence of lithium.16 A size-exclusion column (Bio-beads
SX-1, Bio-rad) was used for product purification.17

The absorption, magnetic circular dichroism (MCD),
fluorescence emission, and excitation spectra (Fig. 1)
were similar to those of monomeric Pcs, indicating that
the level of interaction between the two Pc units is limi-
ted. The most notable point is that the quantum yield
(UF) of fluorescence emission (=0.55) is not reduced sig-
nificantly relative to that of the monomer (=0.76). This
is a unique property that has not previously been
observed in any dimeric Pc system and provides strong
evidence that the two Pc units in the dimer are not con-
jugated and that cofacial aggregation of Pc units may be
suppressed by the gable type conformation.18 The dihe-
dral angle of the two Pc rings was predicted to be ca.
105� for the zinc derivative on the basis of a geometry
optimization using the PM3 Hamiltonian. It should be
noted that the Stokes shift is small, suggesting that the
structure is conformationally rigid.
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Figure 1. MCD (top), electronic absorption (middle) spectra of tetra-

tert-butylated H2Pc monomer (broken line) and gable Pc 12 (solid

line), and fluorescence emission (solid line) and excitation (broken line)

spectra of 12 (bottom) in CHCl3.
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